Introduction to Distributed Access Architecture (DAA) and Remote PHY

SCTE Chicago, 2017
Stephen Kraiman
Agenda

• What is Distributed Access Architecture
 – Description
 – Benefits & Drawbacks / Use cases
 – Forms of DAA

• Deeper Dive: Remote PHY
 – Standards (include OpenRPD) and Interop
 – Ecosystem
How Did We Get Here? CMTS Evolution

Downstream Channel Density

- **DOCSIS 1.1:** 1Dx8U (c. 2001)
- **DOCSIS 2.0:** 2Dx12U (c. 2004)
- **DOCSIS 3.0 Gen. 1:** 16DS/blade (2008)
- **DOCSIS 3.0 Gen. 2:** 32DS/blade (2011)
- **CCAP:** 384DS/blade (2013)
- **DAA** (2017)

Copyright 2017 – ARRIS Enterprises, LLC. All rights reserved.
What Is Distributed Access Architecture?
Explosive Growth in Bandwidth Consumption

Head-end

HFC Network

Subscribers

Huge Growth Here!
Explosive Growth in Bandwidth Consumption

What does that mean here?

Huge Growth Here!

Head-end

HFC Network

Subscribers
A Working Definition….

• What does Distributed Access Architecture mean?

• Replacing analog distribution (analog lasers) with a standard digital (Ethernet) optical transport.

• Distributed Access Architectures can solve head-end space, power, and HVAC capacity issues by moving some key functions of today’s CCAP to reside inside the fiber node.

• Remote PHY (RPD) is one such technology that also can provide the MSO with the advantage of cost reduction by eliminating the analog lasers and reducing amplifier cascades thus improving SNR.

• Widespread deployment of DAA can also enable consolidation of existing head-end facilities into larger, more centralized data centers.
Centralized & Distributed Access Architectures - Simplified

Centralized Access Architecture – I-CCAP

Node / Gateway

Actives

Passives

I-CCAP

MSO Facility

Optical Xmtr

Amplitude Modulation

RF Signals

Optical Rxvr

Amplitude Modulation

Hybrid Fiber Coax

Remote PHY Node

Remote CCAP Node

Distributed Access Architecture (DAA) - Remote PHY

Distributed Access Architecture (DAA) – Remote CCAP

Digital Optics (Optical Ethernet / G.709 / PON)

Digital Optics

Digital Optics (Optical Ethernet / G.709 / PON)

Digital Optics

Router

OTN-G.709

AWG-P2P

NG-EPON

NG-EPON

10G EPON

10G Ethernet

MAC (DS)

PHY (DS)

MAC (US)

PHY (US)

MAC (DS)

PHY (DS)

MAC (US)

PHY (US)
Distributed Architecture Benefits

Increase HFC Bandwidth Capacity
- Better end-of-line signal quality
- Better spectral efficiency
- More wavelengths, better reach

Operational Efficiencies
- Reduce headend power, space, and cooling requirements; hub consolidation
- Add QAMs without changing RF combining network, plant balance
- Partitions scope of change on a node-by-node basis
- Digital fiber “set and forget”

IP Convergence
- Extend IP network to the node
- Alignment with FTTx build-out
- Leverage standards-based interconnectivity & economies of scale
DAA Improvement Relative I-CCAP (CAA) Deployments
Headend Space: Case Study

I-CCAP, multiple nodes per SG

<table>
<thead>
<tr>
<th>Optical Demux</th>
<th>Return RF Splitter</th>
<th>Return RF Splitter</th>
<th>OOB RF Combining</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>DS SG/Node Splitting</td>
<td>DS BC/NC Combining</td>
<td>DS BC/NC Combining</td>
<td>OOB</td>
</tr>
<tr>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>TX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
<tr>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>RX AM Optics</td>
<td>OOB</td>
</tr>
</tbody>
</table>

Power Distribution - Fuses

- Optical Demux
- RX AM Optics
- Return RF Splitter
- Optical Mux
- TX AM Optics
- DS SG/Node Splitting
- DS BC/NC Combining
- Return US Combining
- BC Distribution

Optical Transport

- RX AM Optics
- DS SG/Node Splitting
- DS BC/NC Combining
- Return US Combining
- BC Distribution

I-CCAP

- RX AM Optics
- ARPD RF Combining
Headend Space: Case Study
- CCAP Core, single node per SG
Key RPHY Benefits vs RMACPHY

<table>
<thead>
<tr>
<th></th>
<th>R-PHY</th>
<th>R-MACPHY</th>
</tr>
</thead>
</table>
| **Vendor Ecosystem and Standards** | • More vendor competition—can choose best-in breed for Core/Node separately.
• More scope for virtualization
• DEPI/UEPI/GCP explicit specifications | • No cable-specific networking protocols
• Ethernet /PON spec maturity (vs DEPI/UEPI/GCP)
• No need for R-DTI clock |
| **Node** | • Less power, lower module cost
• Simpler software (less risk of “bricking”)
• Can fit in smaller footprint
• Lower thermal profile | • Doesn’t require Core/RPHY “handshake”—operates as an Ethernet/IP-attached device
• Headend becomes agnostic to ”flavor” of DAA (DOCSIS, PON, WiFi,...) |
| **MAC Scaling** | • MAC and PHY can scale independently
• Supports Multi-Gbps MAC for FDX | • Can support small scale / “as needed” deployment better
• Shorter distance from MAC to subscriber – possible latency benefits |
| **Operations** | • Management and provisioning similar to I-CCAP | • Supports existing I-CCAP vendor enhancements without needing multivendor Core/PHY interop |
Possible Application of RPHY – Facility Consolidation

Possible Application of RPHY – Facility Consolidation

CONSOLIDATION

Data Center CCAP Core

R-PHY Shelf

R-PHY Shelf

RPD

RPD
What Is Remote PHY?

- Standards and Interop
CableLabs MHAv2 Specifications
www.cablelabs.com/specs → DOCSIS → Modular Headend Architecture

• CM-SP-R-PHY (Remote PHY Specification) aka “R-PHY”
• CM-SP-GCP (Generic Control Plane Specification) aka “GCP”
• CM-SP-R-DEPI (Remote Downstream External PHY Interface Specification) aka “R-DEPI”
• CM-SP-R-UEPI (Remote Upstream External PHY Interface Specification) aka “R-UEPI” or “UEPI”
• CM-SP-R-DTI (Remote DOCSIS Timing Interface Specification) aka “R-DTI”
• CM-SP-R-OOB (Remote Out-of-Band Specification) aka “R-OOB”
• CM-SP-R-OSSI (Remote OSSI) aka “R-OSSI”
• CM-SP-DRFI Appendix D
• CM-TR-MHAv2 (Modular Headend Architecture v2 Technical Report)
• CM-TR-DCA (Distributed CCAP Architectures Technical Report)
• Also
 – CableLabs Remote PHY ATP working group (ATP-Init, ATP-Service, ATP-Management)
 – CableLabs OpenRPD software working group
Remote PHY Interoperability

• CableLabs® Interops
 – Monthly in Denver, starting December 2016
 – Ghent, May 2017

• CableLabs Dry Run
 – First ATP Dry Run targeted for September

• CableLabs Qualification
 – TBA

• Operator-driven activities

• Vendor-driven activities
Interoperability: CableLabs OpenRPD Software Working Group

- Framework for multi-vendor collaboration, with an emphasis on spec interpretation
 - Started March 2016
What is included in the OpenRPD software?

- OpenRPD software modules are a subset of an RPD’s software suite
 - Target OpenRPD modules include CLI, GCP, DEPI, UEPI, HAL, L2TPv3
 - Other modules will be either developed in-house or licensed from third-party suppliers
 - Focus on interpretation for interoperability
What Is Remote PHY?

- CCAP Core and Remote PHY Device (RPD)
R-PHY Internal Components

- Also: Security, Management, Out of Band
Remote PHY Access Architecture Variations

- **OOB**
- **CCAP Core vCore**
- **Video**
- **Today’s I-CCAP**

Management / Monitoring

10 Gigabit Ethernet

Digital link

Analog link

Headend or Datacenter

Small Headend/Hub

Cabinet

Outside Plant / Home

MDU Mininode RFoG / CWDM

Remote PHY Node

HFC Node

OBI Free RFoG ONU

SFU

Video Switch

RF-Comb.

RFoG / CWDM

TX

RX

x32

<250 HP

<250-500HP

8-40HP

September 2017
How Does the Ecosystem Change?

- Data, Switching, Timing, OOB, Video
Ethernet Switch Considerations

- IPv6 vs IPv4
- PTP/IEEE 1588 Transparent Clock vs Boundary Clock
- DHCP Relay
- Security (MACSec, 802.1x)
- Multicast Features (MLD, static, PIM,...)
- IEEE 802.3ad/LACP
- OpenFlow (future SDN)
- Port mix (100G, 40G, 10G)
IEEE 1588 Precision Time Protocol (PTP) Grandmaster Clock

• Receives a GPS input as a primary reference for high-precision packet network synchronization

• Vendors at CableLabs as of July 2017
 – Microsemi
 – ADVA
Video OOB Support (SCTE 55-2)
from CM-SP-R-OOB-I05-170111
Video OOB Support (SCTE 55-1)
from CM-SP-R-OOB-I05-170111

Figure 9 - SCTE 55-1 Remote PHY Implementation

Figure 12 - Example Virtual ARPD/Remote PHY Device distribution
Other OOB Signals

- Leakage
- AGC
- Alignment and other pilot tones
- Sweep
- Telemetry (Ingress detection, amp control, etc)

Depending on vendor solution, these can be supported natively or via NDF/NDR or forward/return HFC overlay
Traditional HFC Access Network
ICCAP HFC Access Network Architecture (1st Evolution)
I-Core HFC Access Network Architecture (2nd Evolution) – No Analog Video!
Is DAA Right for You?

- Migration considerations, and what comes next?
Is DAA right for you?

• Does it solve a problem for you cost-effectively? In the right timeframe?
• Is it in line with your corporate strategy?
• Does it provide sufficient flexibility to avoid stranded investments?

– Video infrastructure (broadcast, narrowcast, conditional access)
– Data bandwidth capacity, DOCSIS 3.1, FDX, US/DS split, frequency expansion
– OOB infrastructure
– Fiber build out
– HFC distances / hub consolidation / inside and outside plant infrastructure
– Personnel expertise and training, competitive services
Thank You!

Stephen Kraiman, stephen.kraiman@arris.com