“Best Practices for Proactively Monitoring and Maintaining Your Return Paths”

Kelly Watts
Senior Market Application Engineer
Cable Networks Division
5808 Churchman Bypass
Indianapolis, IN 46203-6109
kelly.watts@jdsu.com

See digital in a whole new light!
Global Leaders in the Markets We Serve

Advanced Optical Technologies

Communications & Commercial Optical Products

Communications Test & Measurement

Currency, Defense, Authentication, and Instrumentation

Cable, Telecom, Datacom, Submarine, Long Haul, Biotech, and Microelectronics

Service Provider, Government, Business, and Home Networks
87 Years of Experience in Test & Measurement

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923</td>
<td>Wandel & Goltermann founded in 1923, begins to develop and manufacture test sets for communications</td>
</tr>
<tr>
<td>1974</td>
<td>TTC Founded</td>
</tr>
<tr>
<td>1998</td>
<td>Wavetek Launches PathTrak Forms WWG</td>
</tr>
<tr>
<td>1999</td>
<td>Wandel & Goltermann + Wavetek</td>
</tr>
<tr>
<td>2000</td>
<td>TTC acquires Applied Digital Access, provider of service assurance systems</td>
</tr>
<tr>
<td>2005</td>
<td>WWG offers first Real-time MPEG Monitoring System</td>
</tr>
<tr>
<td>2006</td>
<td>Acterna created by merger of WWG and TTC, combining the world’s 2nd and 3rd largest T&M companies</td>
</tr>
<tr>
<td>2007</td>
<td>2002 DSAM is launched</td>
</tr>
<tr>
<td>2008</td>
<td>Acterna acquired</td>
</tr>
<tr>
<td>2009</td>
<td>Test-Um acquired: JDSU enters home networking test market</td>
</tr>
<tr>
<td>2010</td>
<td>Casabyte acquired: JDSU enters wireless service assurance arena</td>
</tr>
</tbody>
</table>

JDSU Events:
- **1998:** Wandel & Goltermann acquired |
- **2002:** Casabyte acquired: JDSU expands portfolio for NEMs |
- **2004:** Circadian acquired: JDSU adds industry-leading “stress test” capabilities |
- **2007:** Westover Scientific acquired: JDSU expands Fiber Optics test portfolio with fiber inspection & cleaning tools |
- **2009:** Finisar’s Network Tools acquired: JDSU adds Storage Network Test |
- **2010:** Agilent’s NSD Division acquired: Creates End-to-End Wireless Test Portfolio |

© 2010 JDSU. All rights reserved.
Bandwidth Demand is Growing Exponentially!

- Web Browsing
- E-mail
- Digital Music
- VoIP
- Digital Photos
- Video on Demand
- Video Mail
- Online Gaming
- Podcasting
- Video Blogs
- High Definition Video on Demand
- All Video on Demand Unicast per Subscriber

Bandwidth (Megabits per Second):
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

Time
Market Trends => More content to More devices

- IP devices growing
- Average broadband speed will quadruple by 2014
- IP Traffic consumption will quadruple by 2014 (60% will be video traffic)

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Q4 09 Unique IPs</th>
<th>QoQ Change</th>
<th>YoY Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>465,019,509</td>
<td>4.7%</td>
<td>16%</td>
</tr>
<tr>
<td>United States</td>
<td>124,953,865</td>
<td>4.5%</td>
<td>11%</td>
</tr>
<tr>
<td>China</td>
<td>52,113,869</td>
<td>6.2%</td>
<td>27%</td>
</tr>
<tr>
<td>Japan</td>
<td>32,259,547</td>
<td>1.9%</td>
<td>12%</td>
</tr>
<tr>
<td>Germany</td>
<td>30,912,466</td>
<td>3.9%</td>
<td>10%</td>
</tr>
<tr>
<td>France</td>
<td>21,477,486</td>
<td>2.8%</td>
<td>16%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>20,008,664</td>
<td>3.2%</td>
<td>11%</td>
</tr>
<tr>
<td>South Korea</td>
<td>16,108,106</td>
<td>5.3%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Canada</td>
<td>11,402,213</td>
<td>1.6%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Spain</td>
<td>10,822,929</td>
<td>3.9%</td>
<td>12%</td>
</tr>
<tr>
<td>Brazil</td>
<td>10,779,132</td>
<td>-0.3%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Figure 4: Unique IP Addresses Seen By Akamai

Figure 5. Average Global Broadband Speed Will Quadruple to Reach 14.4 Mbps in 2014

Exabytes per Month

Source: Cisco VNI, 2010
The BAD news is that ingress from one home can potentially kill upstream services for hundreds of your subscribers!!!
DOCSIS® 3.0 adds Capability to Bond up to 4 Upstream 64QAM Carriers!

- Increased chances for laser clipping
- Increased probability of problems caused by ingress, group delay, micro-reflections and other linear distortions
- Inability to avoid problem frequencies such as Citizens’ Band, Ham, Shortwave and CPD distortion beats
- Where are you going to place your sweep points?

Four times 6.4 MHz = 25.6 MHz! (without guard-bands)
Today’s Agenda

- **Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!**
 - Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
 - Forward & Reverse sweep for unity gain throughout coaxial network
 - Monitoring the Return Path

- **Troubleshooting Upstream Impairments**
 - Trouble Shooting Tools
 - Ingress
 - Common Path Distortion (CPD)
 - Impulse Noise
 - Linear Distortions
Major Operational Challenges

- **Plant Certification and Maintenance:**
 - Elevate plant performance to ensure reliable service
 - HFC: Sweep & advanced return path certification
 - Metro Optical: Fiber and transport analysis

- **Monitor Performance:**
 - Continuously monitor the health of your upstream and downstream carriers
 - Proactively identify developing problems before customers do
 - Monitor both physical HFC & VoIP service call quality
 - Utilize advanced performance trending and analysis to prioritize

- **Get Installations Right the First Time**
 - Improve installation practices to prevent service callbacks & churn
 - Verify physical, DOCSIS® and PacketCable™ performance
 - Drive consistency across all technicians

- **Troubleshoot Fast:**
 - When issues occur, find and fix fast
 - Isolate and segment from NOC, dispatch right tech at right time
 - Field test tools that can find problems and verify fix
HFC Networks

- Combines fiber optics with coaxial distribution network
- Return path is more sensitive than the forward path
- Most of the ingress comes from home wiring on low value taps
- Wide variety of aging hardware with many connectors

Today’s “HFC” networks must be optimized for both forward and reverse performance
Monitoring and Maintaining the Return Path

- **Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!**
 - Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
 - Forward & Reverse sweep for unity gain throughout coaxial network
 - Monitoring the Return Path

- **Troubleshooting Upstream Impairments**
 - Trouble Shooting Tools
 - Ingress
 - Common Path Distortion (CPD)
 - Impulse Noise
 - Linear Distortions
Loose Fiber Connector

- SC connector not pushed in all the way

Before

After
Types of Fiber Contamination

A fiber end face *should be free of any contamination or defects*, as shown below:

Common types of contamination and defects include the following:

- Dirt
- Oil
- Pits & Chips
- Scratches
Where is it? – Everywhere

Your biggest problem is right in front of you… you just can’t see it!

DIRT IS EVERYWHERE!

- Airborne, hands, clothing, bulkhead adapter, dust caps, test equipment, etc.
- **The average dust particle is 2–5µ**, which is not visible to the human eye.
- A single spec of dust can be a major problem when embedded on or near the fiber core.
- **Even a brand new connector can be dirty.** Dust caps protect the fiber end face, but can also be a source of contamination.
- Fiber inspection microscopes give you a clear picture of the problems you are facing.
Optimize the Optical Links in Your HFC Networks!

Verify that all optical links have the correct light level at the input of each optical receiver!

Verify that all fiber and RF connections are secure and properly seated!
Too much optical power (light level) into the input of a return optical receiver can cause an abnormal rise in the noise floor above the diplex filter roll-off frequencies.
After adding 2 dB of optical attenuation at the input of the optical receiver, the noise floor above diplex roll-off frequency now looks normal.

2 dB of additional optical attenuation was added to the return input of the optical receiver and resulted in a “flatter noise floor” above the diplex filter roll-off frequencies.
After inserting sweep pulses into the return path, the noise floor above diplex roll-off frequency now exhibits impulse noise created by sweep pulses.

Return Sweep Pulses

42 MHz diplex filter roll-off frequency

When sweep pulses were injected into the return path, “impulse distortions” showed up in the noise floor above the diplex filter roll-off frequencies.
6 dB of additional optical attenuation was added to the return input of the optical receiver and resulted in a “flatter noise floor” above the diplex filter roll-off frequencies, even when sweep pulses were injected into the return path.
Setting the Transmitter “Window”

- RF input levels into a return laser determine the CNR of the return path.
 - Higher input – better CNR
 - Lower input – worse CNR
- Too much level and the laser ‘clips’.
- Too little level and the noise performance is inadequate
- Must find a balance, or, “set the window” the return laser must operate in
 - Not only with one carrier but all the energy that in in the return path.
 - The return laser does not see only one or two carriers it ‘sees’ the all of the energy (carriers) that in on the return path that is sent to it.

Source - Cisco Systems, Inc.
Dynamic range of the return path in an HFC network is typically setup by injecting one or more **CW test signals** and then measured with a typical spectrum analyzer or signal level meter.
Optical Link is Critical to Upstream Performance

- RF level is too high at input of return laser
 - Verify light level at input of return optical receiver
 - Verify RF level at input of return laser
 - Verify RF spectrum above diplex frequency at input of return laser

WebView v2.5 FFT View of the Upstream
Optimize the RF Output of the Optical Receiver

All return path RF signal levels must be set to proper “X” (or Y?) output level at the optical receiver in the headend or hubsite with the correct “X” level injected at the node.

Store test results in a “birth certificate” file folder for each node.
These two DOCSIS® carriers will have the same peak amplitude when hitting the input port of a CMTS at 0 dBmV “constant power per carrier” and then measured with a typical spectrum analyzer.
Measuring Upstream Carrier Amplitudes

These three DOCSIS® carriers will **NOT** have the same peak amplitude when hitting the input port of a CMTS at 0 dBmV “constant power per carrier” and then measured with a typical spectrum analyzer or signal level meter.
Example: Some systems will add 26 dB of external padding between the splitter and CMTS to attenuate the injected CW signal down to a peak level of 0 dBmV at the input port of the CMTS. The CMTS is typically configured to instruct the 6.4 MHz modem carriers to hit the input port of the CMTS at 0 dBmV “constant power per carrier”.
Monitor and Maintaining the Return Path

- **Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!**
 - Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
 - **Forward & Reverse sweep for unity gain throughout coaxial network**
 - Monitoring the Return Path

- **Troubleshooting Upstream Impairments**
 - Trouble Shooting Tools
 - Ingress
 - Common Path Distortion (CPD)
 - Impulse Noise
 - Linear Distortions
WHY SWEEP?

- Less manpower needed
- Sweeping can reduce the number of service calls
CATV amplifiers have a trade-off between noise and distortion performance.

Tightly controlling frequency response provides the best compromise between noise and distortion.
Sweep can find craftsmanship or component problems that aren’t revealed with other tests

- Damaged cable
- Poor connectorization
- Amplifier RF response throughout its frequency range
 - Gain
 - Slope
- Loose face plates, seizure screws, module hardware……..

All of these issues could lead to major ingress and micro-reflection problems!
Balancing Amplifiers - Forward Sweep

Balancing amplifiers using tilt only

Lose Face Plate, or crack cable shield

No Termination

Node Reference Signal

Sweep response with a Resonant Frequency Absorption (A.K.A. suckout)

Sweep response with standing waves

D = 492*V_p/F
Sweeping the Return Path

- Choose operating levels that maximize the distortion performance (dynamic range) of your return path

- Get all of the information that you can on your nodes and amps from your manufacturer

- Create a sweep procedure for your system
 - make up a chart showing injection levels at each test point
Optimize the RF Input to Return Sweep Transceiver

Pad input of sweep receiver transceiver so that 40 dBmV into node equals 0 dBmV at the input of the return sweep transceiver.

There are typically between 16 and 32 nodes combined together for return path sweeping.
Stealth Sweep Pulses Compared to Carrier

Sweep Telemetry Injected at Node @ 40 dBmV?

Test CW Signal Injected at Node @ 40 dBmV

Sweep Pulses Injected at Node @ 40 dBmV?
Inject correct “X” level into node test point and then take a sweep reference.

Telemetry level shown below return sweep trace should read around 0 dBmV if the SDA-5510 is padded properly.

At next amp reverse sweep displays the effects of the network segment between the last amp and this one.
Optimize the HFC Pipe for Unity Gain

Maintain unity gain with constant inputs

Use the DSAM Field View Option to inject a CW test signal into various test points and view remote spectrum

Telemetry = ~0 dBmV
Set TP Loss as required
Sweep Pulses Compared to Carrier

Sweep Telemetry Injected at Node @ 40 dBmV?

Test CW Signal Injected at Node @ 40 dBmV

3.2 MHz wide

Sweep Pulses Injected at Node @ 40 dBmV?
Sweep Pulses Compared to Carriers

Sweep Telemetry Injected at Node @ 40 dBmV?

Test CW Signal Injected at Node @ 40 dBmV

500 kHz wide guard band

6.4 MHz wide

Sweep Pulses Injected at Node @ 40 dBmV?
Sweep Pulses Compared to Carriers

Sweep Telemetry Injected at Node @ 40 dBmV?

Stealth Sweep Pulses Injected at Node @ 40 dBmV?

Peak level of 6.4 MHz carriers at 34 dBmV

Test CW Signal Injected at Node @ 40 dBmV

3.2 MHz wide

6.4 MHz wide

6.4 MHz wide

6.4 MHz wide

500 kHz

500 kHz

500 kHz
Sweep Pulses Compared to Carriers

Sweep Telemetry Injected at Node @ 40 dBmV?

Sweep Pulses Injected at Node @ 40 dBmV?

Test CW Signal Injected at Node @ 40 dBmV
Establish a 0 dBmV reference point at the input of the sweep receiver!

External attenuation should be added after combining multiple nodes to achieve 0 dBmV level at sweep receiver input port.
Optimize the RF Input to SDA-5510 Sweep Transceiver

There are typically between 16 and 32 nodes combined together for return path sweeping.
Sweep Pulses Compared to Carrier

Sweep Telemetry Injected at Node @ 30 dBmV?

Sweep Pulses Injected at Node @ 30 dBmV?

Test CW Signal Injected at Node @ 40 dBmV

Amplitude

6.4 MHz wide
6.4 MHz wide
6.4 MHz wide

100 kHz wide
100 kHz wide
Monitoring and Maintaining the Return Path

Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!
- Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
- Forward & Reverse sweep for unity gain throughout coaxial network
 - Monitoring the Return Path

Troubleshooting Upstream Impairments
- Trouble Shooting Tools
- Ingress
- Common Path Distortion (CPD)
- Impulse Noise
- Linear Distortions
External attenuation may be added to achieve 0 dBmV peak level on widest upstream carrier at RPM input port.

It is critical to optimize the dynamic range of each RPM port!
Example: Some systems will add 19 dB of external padding between the splitter and RPM cards to attenuate the injected CW signal down to a peak level of +7 dBmV at the input port of the RPM port. In this example, the peak level of the 6.4 MHz carrier is attenuated to 0 dBmV at the input port of the RPM port.
Dynamic Range “Measurement Window”

The “peaks” of the upstream carriers below are outside of the measurement window of this particular RPM port. This is called “measurement over range”.

In order to accurately measure the peaks of these carriers and the system noise floor you must optimize the dynamic range of every RPM port.
Measurement Over Range!

0 dB of port attenuation equals +12 dBmV max level

+12 dBmV

50 dB Dynamic Range

-38 dBmV
New Measurement “Over Range” Indicator

Measurement over-range warning!
The “peaks” of the upstream carriers are now within the measurement window of this particular RPM port.
Resolution bandwidth (RBW) filters determine the smallest frequency that can be resolved.

The graphs above represent the same 3 narrow band signals with various RBW filters applied.
Spectrum Analysis with 300 kHz and 30 kHz RBW Filters

The 30 kHz RBW filter measures the levels in the guard band between adjacent carriers over 10dB lower than the 300 kHz RBW filter.
Monitoring between carriers with 30 kHz RBW

Three 16 QAM Carriers
3.2 MHz Wide
centered @ 26.8, 29 and 32.2 MHz
RBW Filters can be different at every Frequency measured in Monitoring View

Monitoring Plan with 250 kHz Frequency Spacing
(Monitoring View measures up to 250 Frequencies)
Recommended Node Ranking Threshold

Up to 1000 Scans in a Row

Up to 1000 out of 1000 Scans

- 0 dBmV
- 0 dBmV

5 to 18 MHz

- -25 dBmV
- -25 dBmV

- -35 dBmV
- -35 dBmV

Diplex roll-off

Frequencies adjacent to carriers measured with 30 kHz RBW
all other measurements @ 300 kHz RBW
Recommended Impulse Noise Threshold

Up to 5 Scans in a Row

5 to 18 MHz

-15 dBmV

-25 dBmV

-35 dBmV

Up to 50 out of 1000 Scans

0 dBmV

-15 dBmV

0 dBmV

Frequencies adjacent to carriers measured with 30 kHz RBW
all other measurements @ 300 kHz RBW
Recommended Ingress & CPD Threshold

- Up to 1000 Scans in a Row
- Up to 1000 out of 1000 Scans

-30 dBmV

18 to 45 MHz

0 dBmV
Spectral Monitoring in a Crowded Upstream

Public Service Radio

1,000 scans in a row or 1,000 out of 1,000 scans

33.4 MHz
Analyzing and Interpreting Performance History

Use Performance History’s Detailed Maximum Trace to see wide band impulse noise trending over time.

Maximum Trace in spectrum analyzer shows wide band impulse noise.
Analyzing and Interpreting Performance History

Use Performance History’s Detailed Average Trace to see rise in noise floor & CPD over time.

Average Trace in spectrum analyzer shows rise in noise floor & CPD.
WebView – Time Over Threshold Graphs

- WebView server enables remote users to access Performance History measurements including “percent of time over threshold” for each on the four PathTrak alarm thresholds.
- spectrum views from RPM cards via Internet Explorer browser
- Each individual remote user has full control of Performance History graph settings
“Percent of Time Over Threshold” Report Setup

Select one or more thresholds
Set up power density chart
Define duration and dates
Get results
Time Over Threshold Reports

Node Certification Reports

15 Minute Summary of RF Performance

Threshold Violations Plotted on Graph

Measurement Details Included with Reports

…and Percent over Threshold Density View
Percent of Time Over Threshold report for 4 Days

Total percent of time exceeding Threshold 1 over 4 days (96 hours) in 15 minute increments!

Percent of time by frequency exceeding Threshold 1 over 4 days (96 hours) in 15 minute increments!
WebView v2.5 Node Ranking Reports

- Automates node certification and node ranking to prioritize field maintenance of “top offenders”
 - Intelligently plan maintenance rather than manually sorting alarms

WebView Node Ranking Reports
Example Node Ranking Threshold

5 to 18 MHz

> 0 dBmV

18 to 30.25 MHz

> -25 dBmV

33.75 to 50 MHz

32 MHz Center Frequency (Bandwidth = 3.2 MHz)

Up to 1000 Scans in a Row

Up to 1000 out of 1000 Scans
Node Ranking Summary Updated Every Day

Summary View of Each Node Certification Report Over the Last 7 Days

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Duration</th>
<th># Failed</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/15/10 6:00 AM</td>
<td>24 Hours</td>
<td>184</td>
<td>view all</td>
</tr>
<tr>
<td>8/14/10 6:00 AM</td>
<td>24 Hours</td>
<td>179</td>
<td>view all</td>
</tr>
<tr>
<td>8/13/10 6:00 AM</td>
<td>24 Hours</td>
<td>172</td>
<td>view all</td>
</tr>
<tr>
<td>8/12/10 6:00 AM</td>
<td>24 Hours</td>
<td>190</td>
<td>view all</td>
</tr>
<tr>
<td>8/11/10 6:00 AM</td>
<td>24 Hours</td>
<td>176</td>
<td>view all</td>
</tr>
<tr>
<td>8/10/10 6:00 AM</td>
<td>24 Hours</td>
<td>154</td>
<td>view all</td>
</tr>
<tr>
<td>8/9/10 6:00 AM</td>
<td>24 Hours</td>
<td>169</td>
<td>view all</td>
</tr>
</tbody>
</table>

- **24 Hour Report**
- **Summary of the daily number of failed nodes**
- **Quick link to view node rankings sorted by HCU/location**
Daily Failed Nodes Report

Failed Nodes Report

Report Start Time: 07/10/2010 00:00

<table>
<thead>
<tr>
<th>Node</th>
<th>HCU</th>
<th>% Time Over Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC08</td>
<td>Tealtown</td>
<td>Yesterday: 38.15%</td>
</tr>
<tr>
<td>MI31</td>
<td>Branch Hill</td>
<td>93.44%</td>
</tr>
<tr>
<td>Test 4</td>
<td></td>
<td>91.27%</td>
</tr>
<tr>
<td>MD07</td>
<td>Carthage</td>
<td>90.93%</td>
</tr>
<tr>
<td>FL01</td>
<td></td>
<td>77.52%</td>
</tr>
<tr>
<td>UC35</td>
<td></td>
<td>66.55%</td>
</tr>
<tr>
<td>SY02</td>
<td></td>
<td>55.15%</td>
</tr>
<tr>
<td>AN26</td>
<td></td>
<td>53.50%</td>
</tr>
<tr>
<td>MD05</td>
<td>Madeira</td>
<td>50.66%</td>
</tr>
<tr>
<td>SY03</td>
<td>Kennedy Hts.</td>
<td>45.76%</td>
</tr>
<tr>
<td>OV01</td>
<td>Central 1</td>
<td>42.19%</td>
</tr>
<tr>
<td>ST26</td>
<td>Loveand</td>
<td>37.68%</td>
</tr>
</tbody>
</table>

- **Quick link to Certification Reports for each individual node**
- **Press icon to quickly analyze live spectrum**
- **View Node Rankings per each HCU**
- **Ranking on Percent of Time Over Threshold**

© 2010 JDSU. All rights reserved.

JDSU CONFIDENTIAL & PROPRIETARY INFORMATION
View Node Rankings per HCU Location

Node Ranking Reports are updated daily for each individual HCU.

Quickly and easily identify the worst performing nodes at each site.

<table>
<thead>
<tr>
<th>Node</th>
<th>HCU</th>
<th>% Time Over Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL01</td>
<td>Carthage</td>
<td>77.52%</td>
</tr>
<tr>
<td>RO05</td>
<td>Carthage</td>
<td>12.87%</td>
</tr>
<tr>
<td>HW03</td>
<td>Carthage</td>
<td>11.63%</td>
</tr>
<tr>
<td>CT01</td>
<td>Carthage</td>
<td>5.38%</td>
</tr>
<tr>
<td>MY05</td>
<td>Carthage</td>
<td>4.18%</td>
</tr>
<tr>
<td>MY01</td>
<td>Carthage</td>
<td>4.09%</td>
</tr>
<tr>
<td>CH01</td>
<td>Carthage</td>
<td>3.28%</td>
</tr>
<tr>
<td>W013</td>
<td>Carthage</td>
<td>2.35%</td>
</tr>
<tr>
<td>NS01</td>
<td>Carthage</td>
<td>1.70%</td>
</tr>
<tr>
<td></td>
<td>Carthage</td>
<td>1.70%</td>
</tr>
<tr>
<td></td>
<td>Carthage</td>
<td>1.07%</td>
</tr>
<tr>
<td></td>
<td>Carthage</td>
<td>0.92%</td>
</tr>
</tbody>
</table>
Node Certification 15 Minute Pass/Fail Summary

- Increase network availability for lucrative Triple Play services and retain most profitable customers by:
 - Qualifying RF return path performance in the HFC infrastructure as required to deliver triple-play services

<table>
<thead>
<tr>
<th>Time</th>
<th>Pass/Fail (highest %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 06, 06:00</td>
<td>failed (32.3%)</td>
</tr>
<tr>
<td>Mar 06, 06:15</td>
<td>failed (30.3%)</td>
</tr>
<tr>
<td>Mar 06, 06:30</td>
<td>failed (34.8%)</td>
</tr>
<tr>
<td>Mar 06, 06:45</td>
<td>failed (36.5%)</td>
</tr>
<tr>
<td>Mar 06, 07:00</td>
<td>failed (35.0%)</td>
</tr>
<tr>
<td>Mar 06, 07:15</td>
<td>failed (36.7%)</td>
</tr>
<tr>
<td>Mar 06, 07:30</td>
<td>failed (28.5%)</td>
</tr>
<tr>
<td>Mar 06, 07:45</td>
<td>failed (20.1%)</td>
</tr>
<tr>
<td>Mar 06, 08:00</td>
<td>passed (11.4%)</td>
</tr>
<tr>
<td>Mar 06, 08:15</td>
<td>passed (15.0%)</td>
</tr>
<tr>
<td>Mar 06, 08:30</td>
<td>passed (15.2%)</td>
</tr>
<tr>
<td>Mar 06, 08:45</td>
<td>failed (34.4%)</td>
</tr>
<tr>
<td>Mar 06, 09:00</td>
<td>failed (40.0%)</td>
</tr>
<tr>
<td>Mar 06, 09:15</td>
<td>passed (12.5%)</td>
</tr>
<tr>
<td>Mar 06, 09:30</td>
<td>passed (12.6%)</td>
</tr>
<tr>
<td>Mar 06, 09:45</td>
<td>passed (14.9%)</td>
</tr>
<tr>
<td>Mar 06, 10:00</td>
<td>passed (11.4%)</td>
</tr>
<tr>
<td>Mar 06, 10:15</td>
<td>passed (19.5%)</td>
</tr>
<tr>
<td>Mar 06, 10:30</td>
<td>passed (4.4%)</td>
</tr>
<tr>
<td>Mar 06, 10:45</td>
<td>failed (21.2%)</td>
</tr>
<tr>
<td>Mar 06, 11:00</td>
<td>failed (27.4%)</td>
</tr>
<tr>
<td>Mar 06, 11:15</td>
<td>failed (30.0%)</td>
</tr>
</tbody>
</table>

Summary of each 15 minute time frame showing PASS/FAIL results on individual nodes.
Node Certification - 15 Minute Pass/Fail Detail

Percent of time over Threshold 4

Node Certification Pass/Fail percentage was set for 20%

Node Certification threshold was set at -25 dBmV above and below upstream carriers

15 Minute Summary of RF Performance
WebView Node Certification - PASS

15 minute time frame is summarized as PASS

Press NEXT>> button to quickly toggle through each 15 minute summary
WebView Node Certification - FAIL

15 minute spectrum summary

- FAIL

15 minute time frame is summarized as FAIL

Press icon to quickly view live spectrum analyzer on this node
Monitoring and Maintaining the Return Path

- Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!
 - Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
 - Forward & Reverse sweep for unity gain throughout coaxial network
 - Monitoring the Return Path

- Troubleshooting Upstream Impairments
 - Trouble Shooting Tools
 - Ingress
 - Common Path Distortion (CPD)
 - Impulse Noise
 - Linear Distortions
The Situation

Can’t justify taking the system down to troubleshoot!

- **Unacceptable to the subscribers who will:**
 - Lose communication
 - Get a slower throughput
 - Have periodic “clicking” in their telephone calls

- **To be non-intrusive we must:**
 - Understand test points
 - Apply new procedures and applications
 - Learn new troubleshooting techniques
Back to the Basics

- Majority of problems are basic physical layer issues
- Most of the tests remain the same
- Check AC power
- Check forward levels, analog and digital
- Sweep forward & reverse
Back to the Basics

- Check for leakage sources
- Check for ingress sources
- Do a visual inspection of cable / connectors / passives
- Replace questionable cable / connectors / passives
- Tighten F-connectors per your company’s installation policy
 - Be very careful not to over tighten connectors on CPE (TVs, VCRs, converters etc.) and crack or damage input RFI integrity
DSAM PathTrak Field View Option

• Works with existing PathTrak Return Monitoring systems
• Allows user to see both desired and undesired return signals from the field
• Order with or without user programmable RSG (return signal generator)
• Optional for all DSAM Models

Field Programmable CW Carrier

Live Upstream Modem Carriers
Field View Broadcast Properties of the Port

- **Frequency Ranges**
 - 5 to 45 MHz
 - 5 to 55 MHz
 - 5 to 65 MHz

- **Dwell Times**
 - 100 µS
 - 400 µS
“Out of Band” 64QAM Test Signal

“Out of band” 64QAM test signal generated by Field meter.
Test Unoccupied Spectrum Before Launch

PathTrak RPM Card

Coax and splitters

8

Upstream Optical Receivers

Fiber Nodes

Fiber

Cable Modems

Coax

Fiber

Coax
The new QAMTrak displays and controls are only available in WebView v2.5.
HFC Performance/Health Metrics

Spectrum Health

Carrier-to-interference – An RF measurement of the ratio of desired carrier amplitude to undesired interference amplitude. Interference may be noise, ingress, nonlinear distortions.

Signal Health

MER (“SNR”) – The ratio of average symbol power to average error power. In effect, a measure of the “fuzziness” of a constellation’s symbol landings distortions.

- Unequalized MER is the MER *before* an adaptive equalizer compensates for channel response impairments
- Equalized MER is the MER *after* an adaptive equalizer compensates for channel response impairments

Data Health

CWE (Corr and Uncorr) – Pass/Fail indication of whether each codeword in each packet contains data errors

BER (Pre- and Post-FEC) – The ratio of errored bits to the total number of bits transmitted, received, or processed
PathTrak QAM Analyzer View – Good Node

- MER & Level Avg/Max/Min
- QPSK & 16QAM Constellation
- Live MER, Level & Symbol Count
- MER & Level Graphed over Time
Interference easily visible in 16 QAM constellation

Interference causing intermittent low MER
Monitoring and Maintaining the Return Path

- **Getting ready for DOCSIS 3.0 - Optimize Your HFC network now!**
 - Verify optimal setup and performance (dynamic range) of both Optical & RF portion of the HFC network
 - Forward & Reverse sweep for unity gain throughout coaxial network
 - Monitoring the Return Path

- **Troubleshooting Upstream Impairments**
 - Trouble Shooting Tools
 - **Ingress**
 - **Common Path Distortion (CPD)**
 - **Impulse Noise**
 - **Laser Clipping**
 - **Linear Distortions**
Common problems in HFC Networks
Common problems in HFC Networks

- Kinked or damaged cable (including cracked cable, which causes a reflection and ingress).

- Defective or damaged actives or passives (water-damaged, water-filled, cold solder joint, corrosion, loose circuit-board screws, etc.).

- Cable-ready TVs and VCRs connected directly to the drop. (Return loss on most cable-ready devices is poor.)

- Some traps and filters have been found to have poor return loss in the upstream, especially those used for data-only service.
Common problems in HFC Networks

- Damaged or missing end-of-line terminators
- Damaged or missing chassis terminators on directional coupler, splitter or multiple-output amplifier unused ports
- Loose tap faceplates and loose center conductor seizure screws
- Unused tap ports not terminated. This is especially critical on lower value taps
- Use of so-called self-terminating taps (4 dB two port; 8 dB four port and 10/11 dB eight port) at feeder ends-of-line. Such taps are splitters, and do not terminate the line unless all F ports are properly terminated
What Type of Problem: Common Impairments

- **Ingress**
 - Still the most common
 - Use return path monitoring system to know when to chase

- **Common Path Distortion**
 - Old news in analog DS plant
 - New look in all-digital plant

- **Impulse Noise**
 - Impulse noise troublesome for CMTS
 - RFI detector for power-line noise
RF ingress — The 5-42 MHz reverse spectrum is shared with numerous over-the-air users.

Signals in the over-the-air environment include high power shortwave broadcasts, amateur radio, citizens band, government, and other two-way radio communications.
Ingress - Off-air Broadcast Radio Carrier

Coherent Interference
If the constellation looks like it has “donut shapes” in it, the problem is likely to be some form of coherent interference. Often caused by off-air ingress such as citizens band radio, shortwave radio, or other broadcast radio sources.

Off-air public broadcast radio carrier under the DOCSIS® 16QAM carrier
Downstream Spectrum Mode – CW @ 11.75 MHz
Field View – CW @ 11.75 MHz

<table>
<thead>
<tr>
<th>File</th>
<th>View</th>
<th>Reset</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19.000 MHz</td>
<td>-44.7 dBmV</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>16.500 MHz</td>
<td>-44.0 dBmV</td>
<td>0.7 dB</td>
</tr>
</tbody>
</table>

QAM Test

dwell: 100 μs
telem: 19 dBmV
Typical Problem Areas

- **Taps**
 - Most ingress comes from houses off of with low value taps of approximately 17 dB or less

- **Home Wiring**
 - Drop Cable, splitters & F Connectors are approximately ~95% of Problem

- **Amplifiers, hard line cable** and the rest of the system are a small percentage of the problem if a proper leakage maintenance program is performed
Taps

- Taps are a combination of a DC and a splitter network
- Taps give an actual representation of what the subscriber is seeing and transmitting in to
- Points to remember;
 - Lower valued taps equal more through loss

This would be a DC-12

The splitter network = ~11 dB of loss
Testing with Seizure Screw Probes

- Spring loaded seizure screw probes create a good ground and quick connect without causing outages.
- Use a 20 db pad with AC block when using a field meter and a spring loaded seizure screw probe.

Remove protective cap and probe the seizure screws.

Forward Path

Return Path

4 Port Tap
Taps - Probe the Seizure Screws for Ingress & CPD

If the problem is at the FWD Output of tap, continue on towards end of line

If the problem is at the FWD Input and not the FWD Output, then the problem is likely from one of the drops

Forward Path

Return Path
Taps are made up of a Directional Coupler and Splitters

- If the problem is at the Forward Input and not the Forward Output, then the problem is from one of the drops.

Disconnect one drop at a time to determine the point of entry.

4 Port Tap

Forward Path

Return Path
Tracking Down Ingress – Divide and Conquer

View local spectrum on each return path test point of node to determine which leg has the source of ingress

Use divide and conquer technique to identify and repair source of ingress
In-Home Wiring Is A Potentially Large Stumbling Block

- The subscriber drop remains the weakest link in the cable network

- Seven out of ten service calls are generated by problems at the drop

- Ingress caused in the home wreaks havoc on the reverse path
 - Must be found in the home before connecting to network when possible
 - Must be monitored continuously and eliminated quickly

- Replacing all home wiring is economically unacceptable, testing is required to find faults and bring the home wiring up to standards necessary for new services.
Common Problems Typically Identified in the Drop

- Kinked or damaged cable (including cracked cable, which causes a reflection and ingress)

- Use of staples that perforate or compress coaxial cable resulting in impedance mismatches

- Cable-ready TVs and VCRs connected directly to the drop (Return loss on most cable-ready devices is poor)

- Older splitters and amplifiers may not be rated for 750MHz, 860MHz or 1GHz

- Some traps and filters have been found to have poor return loss in the upstream, especially those used for data-only service
There are Many Possible Sources of Interference

Off-Air Broadcast
• AM Radio Station
• FM Radio Station
• TV Station
• Two-way Radio Transmitters
• Citizens Band (CB)
• Amateur (Ham)
• Taxi
• Police
• Business
• Airport/Aircraft
• Paging Transmitters

Electrical Devices
• Doorbell transformers
• Toaster Ovens
• Electric Blankets
• Ultrasonic pest controls (bug zappers)
• Fans
• Refrigerators
• Heating pads
• Light dimmers
• Touch controlled lamps
• Fluorescent lights
• Aquarium or waterbed heaters
• Furnace controls
• Computers and video games
• Neon signs
• Power company electrical equipment
• Alarm systems
• Electric fences
• Loose fuses
• Sewing machines
• Hair dryers
• Electric toys
• Calculators
• Cash registers
• Lightning arresters
• Electric drills, saws, grinders, and other power tools
• Air conditioners
• TV/radio booster amplifiers
• TV sets
• Automobile ignition noise
• Sun lamps
• Smoke detectors
Testing the Home for Ingress Contribution

Disconnect drop from tap and check for ingress coming from customer’s home wiring

If ingress is detected, scan spectrum at ground block for ingress

INGRESS SPECTRUM MEASUREMENTS
What Causes Signal Leakage & Ingress?

- Most common source of leakage is within the home wiring (approximately 75%) and drop cable (approximately 20%). There’s a lot of homes that still have the original wiring from 20-30 years ago!

- Inferior quality coaxial cable, passives, connectors

- Poor installation of splices and connectors - water and weather can result in pulled out, loose or corroded connectors

- Illegal connections to neighbor’s cable

- Some of the older TV sets with poor tuner shielding can produce leakage and ingress problems
What Causes Signal Leakage & Ingress?

- Some less abundant sources, such as trunk or bridger amplifiers output, are likely to radiate much greater RF energy and produce a bigger effect on the system’s total leakage.

- Radial cracks in the expansion loop

- Improperly terminated splitters, jumpers from drops to taps or ground blocks

- **Accidents (vehicles crashing into poles)**

- The environment, weather, landscape & even animals (squirrel chews) could have an effect
Ingress - CB Radio

CB Radio
Common Impairments: Laser Clipping

- Caused by Overdriving Laser
 - Low end ingress
 - Improper laser setup
 - Adding carriers without compensating

- Very distinct constellation footprint
 - Also see as junk above diplex in spectrum
 - Optical receiver issues can look similar

Before/After:
Faulty Optical Receiver
Similar to Laser Clipping

Wide band impulse noise above diplex roll-off frequency
Reverse Path Impairments – Laser Clipping

Harmonic at twice the frequency of the carrier

Dots in the outer squares of constellation are “pulling towards the center of graph"
Amplifier Compression
Amplifier compression often manifests as rounding of the corners of the constellation. Laser clipping often manifests as increased spread in the corners of the constellation. Both are caused by overdriving an amplifier or laser usually due to ingress or misalignment. (unity gain) May become more prevalent as more DOCSIS® upstream carriers are added.
This constellation pattern is noticeably distorted due to a defective optical receiver.

The constellation pattern “returned to normal” after replacing the defective optical receiver!
Examples of Problems Solved by MACTrak

- Observation: In-Band Response Looks Bad Largely due to Chart Scaling
 - IBR often more of an effect than a cause – be careful
 - Note Ingress Under The Carrier Display
Examples of Problems Solved by MACTrak

- **Temporary Fix: Move The Carrier Away From Interferer**
 - Codeword Errors drastically reduced
 - Note Ingressor still there where carrier used to be
 - Doesn’t show in min hold (yellow) trace – ingressor is bursty (explains good vs bad packets in previous slide)
Examples of Problems Solved by MACTrak

- **Permanent Fix – Get Rid of Ingressor and Return Carrier to Original Frequency**
 - Ingressor caused by illegal hookup tapping into 3-way splitter
 - CWE’s nearly completely wiped out, IBR good, MER much better
 - Low end ingress still there – is a problem but was not THE problem
Common Path Distortion (CPD) — common path distortion usually occurs at a dissimilar metals interface where a thin oxide layer has formed.
- Non-linear mixing from a diode junction
 - Corrosion (metal oxide build-up) in the coaxial portion of the HFC network
 - Dissimilar metal contacts
 - 4 main groups of metals
 - Magnesium and its alloys
 - Cadmium, Zinc, Aluminum and its alloys
 - Iron, Lead, Tin, & alloys (except stainless steel)
 - Copper, Chromium, Nickel, Silver, Gold, Platinum, Titanium, Cobalt, Stainless Steel, and Graphite

- Second and third order distortions
Common Path Distortion (CPD) beats

- 6 MHz
- 12 MHz
- 18 MHz
- 24 MHz
- 30 MHz
- 36 MHz
- 42 MHz
Common Path Distortion (CPD) beats
Common Path Distortion (CPD) beats 24 MHz +/- 1.25 MHz.
Reverse Path Performance History shows intermittent CPD that varies by time of day. If you only look at snapshot of performance during day you would miss what would affect customer service at night.
CPD Troubleshooting

- **Pull a forward or return pad to see if the return “cleans-up”**?
 - This is definitely CPD or ingress
 - Very intrusive though – pulling pads when troubleshooting is not acceptable!

- **Try not to disturb anything in this tracking process**
 - Vibrations and movement can “break away” the diode/corrosion causing this CPD
 - Voltage surges can also destroy the diode
 - At least long enough to warrant a return visit!

- **Visually inspect hardware and replace defective components**

- **Tighten all seizure screws and connectors to specifications**
As operators add more and more QAM carriers to the downstream, Common Path Distortion beats can show up in the return spectrum as distinct “haystacks” in the noise floor which are spaced in 6 MHz intervals!

“QAM like haystacks” are 6 MHz wide and spaced in 6 MHz intervals!

“Analog Video beats” can still show up at “typical CPD frequencies” which are spaced in 6 MHz intervals.

Common Path Distortion (CPD) “QAM CPD beats”
Impulse noise — Most reverse data transmission errors (i.e. Code Word Errors) have been found to be caused by bursts of impulse noise. Impulse noise is characterized by its fast rise-time and short duration.

Common sources include cracked ceramic insulators on power lines, electric motors, electronic switches, neon signs, static from lightning, and household appliances.
Wideband Impulse Noise = Code Word Errors!

Diplex roll-off at 42 MHz
What is An Errored Symbol?

All symbols contained within their correct decision boundaries
Likely Result: No CWEs

One symbol crosses decision boundary into neighboring cell
Likely Result: Correctable CWE

Many symbols cross decision boundaries into neighboring cells
Likely Result: Uncorrectable CWE
Impulse Noise Detectors

RFI locators detect sparks and corona that cause radio and T.V. interference (RFI TVI).

Detects indoor sparking and electronic sources
Impulse noise goes past diplex roll-off at 42 MHz
Performance History Maximum Graph – 24 Hrs
Wide Band Impulse noise starts each day at around 4:00 PM
Wide Band Impulse noise starts each day at around 4:00 PM.
Wide Band Impulse noise starts each day at around 4:00 PM
Electrical Impulse Noise from One House

- In-Band Power: 10.393 dBmV
- In-Band Power: 8.632 dBmV

- Reverse Spectrum shot at customer's drop
View Impulse Noise in Zero Span (Time Domain)

Packet of data transmitted by a DOCSIS® cable modem

Impulse noise under the DOCSIS® cable modem
“Products based on the HomePlug 1.0 and HomePlug AV specifications can bridge an existing networking technology (such as a wireless or Ethernet network) and your home's power lines.”

Network your TV with HomePlug AV
Home Plug Interference

HomePlug uses 917 OFDM sub-carriers. OFDM modulation allows co-existence of several distinct data carriers in the same wire.

“The number of whole-home DVR installations is expected to grow at a CAGR of over 100 percent from 2006 to 2008.”
-- In-Stat
Features

• Uses your existing coaxial wiring
• Perfect for transferring large multimedia files such as movies, music, and photos
• Uses existing coax cabling
• Supports speeds up to 144 Mbps burst, 95 Mbps sustained
• Complies with the HPNA 3.1 over coax specification (ITU G.9954)
• Supports point-to-point and point-to-multipoint network configurations
Wideband HomePNA™ Ingress in the Return Path

“The HomePNA™ Alliance develops triple-play home networking solutions for distributing entertainment data over both existing coax cable and phone lines. “
Common Linear Distortion Impairment Types

Micro-reflections
- Common Causes
 - Damaged/missing terminators
 - Loose seizure screws
 - Water-filled taps
 - Cheap/damaged splitters or CPE
 - Kinked/damaged cable
 - Install Issues

Group Delay
- Common Causes
 - Operation too close to diplex roll-off
 - Defective diplex filters
 - AC power coils/chokes
 - Notch Filters (high-pass, HSD-only, etc)
 - Micro-reflections

In-channel Freq. Response
- Common Causes
 - Misalignment
 - Impedance mismatches
Diamond shaped clusters in the constellation

Multiple cable modems with different MER levels

Group Delay / Micro-reflections
If the accumulation takes on a diamond shape, the problem is likely a group delay issue
Constellation may take on a diamond or square shape
Clarity of diamond shape will vary with percentage of packets affected
Microreflections are a common cause of group delay
Often caused by unterminated or improperly terminated lines or faulty CPE (cheap TV or VCR)
Group delay can also result from a carrier placed too close to the band edge of the diplex filter
Linear Distortions – Micro-reflection

- Approximation of channel impulse response
- Red dots indicate Microreflection Threshold for each bar (DOCSIS Spec – Headroom)
- Any bar violating threshold is colored red
 - **Note**: Bar that violates threshold may not be the tallest bar (note stepdown of thresholds)
- Main Tap (time = zero) will always be the largest, will always be green
- Chart is generated from equalized data (vs unequalized data)

- **X-Axis**: Time bin in nS relative to main tap
- **Y-Axis**: Amplitude of signal relative to the carrier (dBc)
- **Interpretation**:
 - The farther the bar is to the right, the later the reflection arrived at the headend
 - The higher the level of a bar, the stronger the microreflection as received at the headend
- **Common Causes**:
 - Damaged/missing terminators, loose seizure screws, water-filled taps, cheap/damaged splitters or CPE, kinked/damaged cable, install Issues
Linear Distortions – Group Delay

Chart displays the delay of the signal from the CM to RPM3000 over the frequency of the carrier.

Chart is generated from equalized data (vs unequalized data).

Common Causes:
- Operation too close to diplex roll-off
- Defective diplex filters
- Notch Filters
- Microreflections

- X-Axis: Frequency (covers frequency range of the carrier)
- Y-Axis: Delay of the signal in nS at each frequency
- Interpretation:
 - Max peak to peak variation across the entire carrier frequency can exceed Threshold value and still not fail
 - Remember: Pass/Fail is based on peak to peak per 1MHz slice of spectrum
In-Band Frequency Response

- Frequency response chart across a given carriers frequency
- Think of it like a sweep display for the discrete carrier frequency range
- Chart is generated from equalized data (vs unequalized data)
- Value reported by QAMTrak is the highest amplitude point minus the lowest amplitude point per 1MHz slice of the carrier frequency range

- **X-Axis:** Frequency (covers frequency range of the carrier)
- **Y-Axis:** Amplitude of signal at each frequency relative to the average carrier level
- **Interpretation:**
 - A carrier with an ideal frequency response will have a flat response chart
 - Modems with very similar in-band response footprints may be impacted by a common impairment
 - Same water-filled tap, etc
Clean Return Spectrum (Below 45 MHz)
Clean Return Spectrum Adjacent to Return Carriers
Move this marker and all of the displays will show the corresponding measurements for each packet.
Good In-Band Response from a Single Modem

Move this marker and all of the displays will show the corresponding measurements for each packet.
Bad In-Band Response from a Single Modem

Move this marker and all of the displays will show the corresponding measurements for each packet.
Good In-Band Response from a Single Modem

Move this marker and all of the displays will show the corresponding measurements for each packet.
Bad In-Band Response from a Single Modem

Move this marker and all of the displays will show the corresponding measurements for each packet.
Good In-Band Response from a Single Modem

Move this marker and all of the displays will show the corresponding measurements for each packet.
Bad In-Band Response from a Single Modem

This constellation display indicates the presence of linear distortions such as micro-reflections and group delay.
Testing for Linear Distortions in the Home

Drop Cable

House

TAP

2

High Pass Filter

4-Way Splitter

2-Way Splitter

2-Way Splitter

OLDER TV SET

DIGITAL SET-TOP

OLDER TV SET

WIRELESS LAPTOP

GROUND BLOCK

COMPUTER

VoIP

ONLINE GAMING

eMTA-CABLE MODEM

WIRELESS LAPTOP

Drop Cable
Testing for Linear Distortions in the Home

Diagram showing a network setup with:
- TAP
- Drop Cable
- Ground Block
- 2-Way Splitter
- High Pass Filter
- 4-Way Splitter
- Older TV Set
- Digital Set-Top
- Computer
- VoIP
- Wireless Laptop
- Online Gaming
- eMTA-Cable Modem

Devices and connections are illustrated in the diagram to demonstrate the testing for linear distortions in the home environment.
Analyzing and Interpreting live Spectrum Traces

Defective modem
Bad Mini-Connector at the Input of CMTS Causing Excessive Loss
3.2 MHz Wide Carriers Spaced at 3.0 MHz

These 3.2 MHz wide carriers should be spaced at a minimum of 3.2 MHz between center frequencies!
Severe Transient Hum Modulation

- The RF choke can saturate with too much current draw and cause the ferrite material to break down
- Same thing can happen in customer installed passives
- Notice that this looks a lot like CPD
Training... Training... Training...

- You never have too much training!
 - Learn everything you can about Triple Play & HFC networks
 - Company sponsored training
 - SCTE Chapter Meetings & Certification programs
 - SCTE EXPO & Emerging Technologies
 - CED and Communications Technology magazines
 - Vendor “product specific” training
 - Learn everything you can about the devices in your network, both the physical layer and data layer
 - **Headend**: Modulators, Multiplexers, CMTS etc.
 - **Outside plant**: Nodes, Amps, Passives etc.
 - **Subscriber’s drop**: Digital Converter, DVRs, Cable Modems, eMTAs, house amps etc.
 - Learn how to get the most out of your test equipment & CPE diagnostics
 - most vendors will train you
- Be thorough - Take pride in your work!
 - Do the installation right the first time
 - Take the time to properly certify every drop for Triple Play services
See digital in a whole new light!

Questions?

kelly.watts@jdsu.com
DSAM with HomeID: Deliver Whole-Home DVR Service with Lowest Rate of Return Service Calls

- Overcome the new challenges of higher frequency and signal path used by MoCA
- 70~80% of all issues are from Tap down
 - 80% of those are from physical / craftsmanship problems: loose connectors, bad cables etc.

- Now there will be a way to rapidly certify and troubleshoot the most untested part of the plant
 Available Summer of 2011
 - Locate coax issues loose connectors and cables
 - MoCA + Triple-play coverage (4 MHz ~ 1.6 GHz)
 - Home wiring topology
 - Cost effective integration with DSAMXT
 - < 6 months pay back by just reducing 2 repeat truck rolls / month / technician
PathTrak™ Return Path Monitoring Benefits

Troubleshoot nodes faster to reduce MTTR and increase workforce efficiency

- Identify impairments before rolling a truck using both spectrum and LivePacket™ technology
- Use Field View™ with SDA and DSAM field meters to quickly locate ingress, the most common impairment
- View performance history to understand transient problems to roll a truck at the right time to find and fix the issue

Reduce trouble tickets and customer churn by identifying problems before your subscribers

- Rank nodes using convenient web-based reports for proactive maintenance
- Easily and quickly detect impairments such as fast impulse noise, ingress, CPD, and laser clipping on all nodes 24/7
- View live spectrum, QAMTrak™ analyzers and a wide array of reports conveniently via the web
How RPM3000s Help You Solve Your Toughest Problems

With RPM3000 cards and WebView 2.5 you can:

- Identify which impairments are causing customers service to be impacted
 - Codeword errors indicate high likelihood of data corruption within packets

- Troubleshoot an intermittent issue with repeat truck rolls (over a long period) using MACTrak
 - Filter on customers MAC, capture at what time they go bad and the nature of the impairment

- Troubleshoot a customer complaint before rolling a truck using MACTrak
 - Filter on customers MAC address, see if their packets are bad right now and why?

- Segment linear impairments using a DSAM
 - Filter on DSAM packets and see impairment turn off in real time via WebView if problem fixed was “The” problem

- Identify plant impairments on a node flagged by your corporate node ranking system
 - Find and fix the impairments to get your nodes off of the regional worst nodes list quickly

- Check robustness of a 16QAM carrier before converting to 64QAM
 - Measure group delay, in-band response, microreflections, MER without disrupting customer HSD/VOIP services

- Identify bad cable modems (faulty equipment for impairments like noisy transmitters)

- Test out of band prior to advanced DOCSIS 3.0 carrier turn-up
 - Know that empty spectrum is ready to support advanced services before live carrier turn-up
WebView v2.5 Good Node (at least for a little while)
Key HFC T&M Solutions that JDSU Provides

JDSU designs award winning solutions that provide greater visibility into your HFC network health and enabling your workforce to proactively monitor and perform preventative maintenance activities

- **PathTrak™ Return Path** Monitoring
 - Real-time RF spectrum and QAM analyzer troubleshooting

- **PathTrak WebView** - Web Based Access to Live Spectrum and QAM analyzers and Historical Measurements plus Node Certification and Ranking Reports

- **PathTrak Video** Monitoring - RF/QAM and MPEG - Real-time RF spectrum and QAM MPEG analyzer troubleshooting

- **SDA** and **DSAM** portable field QAM and RF Spectrum Analyzer and Sweep Platforms
 - PathTrak Field View - remote spectrum analyzer on SDA and DSAM meters

- **Test Productivity Pack** – Web Based Meter Management software and Home Certification Reports

- **DTS** – Portable and Rack Mounted MPEG Analyzers

- **NetComplete** - End-to-end Status Monitoring, and Performance Management
 - QT-600 VoIP/MPEG IP Probe

Buy one solution at a time or buy them all together…. Either way JDSU has you covered